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Finite-Temperature Gravitational Cerenkov 
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The graviton action in vacuum is generalized for a medium with a constant 
gravitational index of refraction. From this generalized action the power spectrum 
of the Cerenkov radiation of gravitons is derived in the framework of source 
theory at zero and nonzero temperature. 

1. I N T R O D U C T I O N  

(2erenkov radiation is produced in electrodynamics by a fast-moving 
charged particle in a medium when its speed is faster than the speed of light 
in this medium. This radiation was first observed experimentally by Cerenkov 
(1934) and theoretically interpreted by Frank and Tamm (1937) in the frame- 
work of classical electrodynamics. The source-theoretic description of  this 
effect was given by Schwinger et  al. (1976) for zero temperature, and the 
classical spectral formula was generalized in source theory at finite tempera- 
ture by Pardy (1989). 

Gravitational Cerenkov radiation as the analog of the electromagnetic 
effect is obviously conditioned by the gravitational index of  refraction. There 
are a number of discussions concerning of the propagation of gravitational 
waves in bulk matter with a gravitational index of refraction. Szekeres (1971) 
found the index of refraction of gravitational waves propagating through 
matter composed of particles in which the incident wave induces quadrupole 
moments. Polnarev (1972) and Chesters (1973) discussed the interaction of 
gravitational waves in a hot gas and Peters (1974) calculated the index of 
refraction of a cold gas of free particles. 
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In classical electrodynamics, the existence of Cerenkov radiation is a 
natural consequence of the existence of an index of refraction of the medium. 
In the analogous gravitational situation the gravitational Cerenkov radiation 
is a natural consequence of the existence of a gravitational index of refraction. 

Here we do not consider the microscopic mechanism generating the 
gravitational index of refraction, however. We define the index of refraction 
by the metric gr involved in the equation for the Green function in the 
background gravitational field with metric g~: 

1 ~(x) (1) - 

where g is the determinant of the g~. Now, if we define the background 
metric by the equations 

gko = 0, gkl = ~kt, g0o = --n 2 (2) 

then the left side of equation (1) is just the left side of the wave equation 
with the index of refraction n, and obviously the Green function defined by (1) 
is the Green function for propagation of massless particles in the background 
medium with velocity c' = c/n and not c. 

Under such conditions, we derive in this article the power spectrum of 
gravitons in the framework of the Schwinger source theory (Schwinger et aL, 
1976; Schwinger, 1970) at zero temperature, and using the finite-temperature 
graviton propagator, we generalize the result for the nonzero-temperature 
situation. 

First, we generalize the graviton action to the situation with the general 
metric g ~  and then we specify the metric by relations (2). The derivation 
of the power spectrum is analogous to the electromagnetic case. The result 
is the gravitational analog of the Frank-Tamm formula for electromagnetic 
Cerenkov radiation. The finite-temperature gravitational Cerenkov radiation 
is derived here by the finite-temperature procedure (Pardy, 1989). 

2. SOURCE-THEORY FORMULATION OF THE PROBLEM IN 
RIEMANN SPACE-TIME 

Source theory (Schwinger et al., 1976; Schwinger, 1970) is a theoretical 
construction which uses quantum mechanical particle language. Initially it 
was constructed for a description of particle physics situations in high-energy 
physics experiments. However, it was found that the original formulation 
simplifies calculations in electrodynamics and gravity, where the interactions 
are mediated by the photon or the graviton, respectively. The special values 
of mass and spin of the photon or the graviton combined with the general 
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laws of quantum mechanics and special relativity are so restrictive that the 
essential frameworks of these fundamental theories are so analogous that it 
is possible to speak of the methodological unification of electromagnetism 
and gravity (Schwinger, 1976). This means that the analogy can be expected 
also in the specific situation of production of gravitons by the motion of 
particles in a medium of gravitational index of refraction n. 

The basic formula of the source theory is the vacuum-to-vacuum ampli- 
tude (Schwinger, 1970): 

(0+ 10-) = e (i/h)W(S) (3) 

where the minus and plus tags on the vacuum symbol are causal labels, 
referring to any time before and after the space-time region where the sources 
are manipulated. The exponential form is introduced with regard to the 
existence of physically independent experimental arrangements and has a 
simple consequence that the associated probability amplitudes multiply and 
the corresponding W expressions add (Schwinger et al., 1976; Schwinger, 
1970). 

In the fiat space-time the field of gravitons is described by the amplitude 
(3) with the action 

w(/) 
_ 4"a'G f , , ca J ( d x ) ( d x ' ) [ T ~ ( x ) D + ( x  - x ) T ~ ( x  ) 

1 
- ~ T(x)D+(x - x ' )T(x ' ) ]  (4) 

where the dimensionality of W(T) is the same as the dimensionality of the 
Planck constant h. Here T~ is the tensor of momentum and energy, and for 
a particle moving along the trajectory x = x(t) it is defined by the equation 

T ~ ( x )  = c 2 P~P~ ~(x - x(t)) (5) 
--F- 

where p~ is the relativistic four-momentum of a particle with a rest mass m and 

p~ = (E/c, p) (6) 

p~p~ = - m 2 c  2 (7) 

and the relativistic energy is defined by 

m c  2 

E - (1 - v2/c2) 1/2 (8) 

where v is the three-velocity of the moving particle. 
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The symbol T(x) in formula (4) is defined as T = g ~ T ~  and the symbol 
D§ - x') is the graviton propagator; its explicit form will be determined later. 

In the case of nonflat space-time with the general metric gr there exists 
a system of rules to transcribe the action W(T). It follows from general 
relativity theory (Weinberg, 1972) that all equations and formulas are influ- 
enced by gravity in the presence of the gravitational field expressed by the 
metric tensor gr The general method for including the effect of gravity on 
mechanics and electrodynamics consists first in formulating the equations of 
motion from the viewpoint of the special theory of relativity and then formulat- 
ing them in a general covariant way which is equivalent to the situation with 
the gravitational field on the condition that the system is sufficiently small 
in comparison with the scale of the fields. According to Weinberg, the rules 
generating the general covariance are as follows: 

(dx) __> ,fL-~ (dx) (9) 

1 
(lo) 

T ~  --> g~,g~f~T ~f~ (11) 

D+ ~ D+8(x, x') (12) 

where g is the determinant of the metric tensor g~. The function D§ x') 
is the graviton propagator in the gravitational field and in our case it is the 
graviton propagator in the metric corresponding to the gravitational index of 
refraction n. 

In this way we get the action W(T) embedded into the space-time with 
metric g~: 

4 of [ 
W(T) = - - ~  (dx)(dx') T~"(x)gr x') 

1 
- -~ gw, T~"(x)D+g(X, x')go,~T~'f~(x ') (13) 

The formula (13) describes the interaction of a particle with zero mass 
and spin 2 and spirality • 2 (graviton) with the metric field of external gravity. 
The derivation of the general covariant action is in agreement with the 
discussion in Yilmaz (1975) concerning gravity and source theory. 

3. THE POWER SPECTRAL FORMULA 

The probability of the persistence of the vacuum is given by (Schwinger 
et al., 1976) 
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] 1(0+10_)[ 2 = exp - ~  Im d exp -- dt dto ~ P(to, t) (14) 

where we have introduced the so-called power spectral function (Schwinger 
et al., 1976) P(00, t). In order to extract this spectral function from Im W, it 
is necessary to know the explicit form of the graviton propagator D+g(x - 
x'). The physical content of this propagator is analogous to the photon 
propagator. It involves the property of spreading of gravitons with velocity 
c/n. Its explicit form is the same as that of the photon propagator. With regard 
to Schwinger et al. (1976) and (1) with metric (2), we can therefore write 
for our problem 

1 fl ~ (dk) e ik(x-x') 
D+g(X-  X ' ) =  n-2 ~u (2'rr) 4 Ikl 2 2 - it  

_ _ (~ sin(noolc) lx - x'] 
i dm e -i ' ' '-t ' j  (15) 

4~2cn2 J0  I x - x'l 

Now, using formulas (13)-(15), we get the power spectral formula in 
the form 

4~G I sin(nto/c) lx - x' [ 
e(o~, t) = c-Y~n2 J (dx)(dx')dt' Ix - x'[ cos to O - t ') 

• _ 1 ~ t , ) l (16) [T~(x ,  t)g~g#~T"~(x ', t') ~ g ~ T  ~" (x, t ) g ~ T ~ ( x  ', 

Cerenkov radiation in electrodynamics is produced in the linear case by 
a uniformly moving charge with constant velocity v = (v, 0, 0). In the 
gravitational situation gravitational Cerenkov radiation is generated by the 
energy-momentum tensor of a uniformly linearly moving particle with rest 
mass m and constant velocity v. If we insert the tensor of the energy-momen- 
tum of the particle moving along the trajectory x = vt into (16), then using 
the metric tensor (2), "r = t - t', and 13 = vlc, we get instead of the formula 
(16) the relation 

- - -  cos m'r (17) "lTVn 2 1 -Z -~z 134 1 + ~2j . o~ d,r sin no0[3q'.r 

The formula (17) contains the known integral 

f [  d, r Sin nm~'r {'rr, n [3>  1 cos ~oa" = (18) 
T 0, n l S < l  
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Using the integral (18), we finally get the power spectral formula of the 
produced gravitons: 

Go m 2 
P(~o, t) - ( n2~'" n~ > 1 (19) vn 2 1 -- ~2 ~4 1 Jr- ~ 2 ] ,  

and P(to, t) = 0 for n13 < 1. 
The power spectral formula (19) is the gravitational analog of the Frank- 

Tamm formula for Cerenkov radiation in electrodynamics. 
The dimensionality of P(to, t) is ergs because [G] = cm 3 g-i s-2, [to] 

= s-l, [m 2] = g2, and [v -I] = cm-i s. This is in agreement with the definition 
of the power spectral formula involved in the energy loss equation of the 
produced radiation: 

d E  = ( d o )  P(oJ, t) (2O) 
dt  J 

4. FINITE-TEMPERATURE CONTRIBUTION 

Finite-temperature quantum field theory (QFT) was developed two 
decades ago and is being intensively studied. The first formulation of finite- 
temperature QFT was presented by Dolan and Jackiw (1974), Weinberg 
(1974), and Bernard (1974) and its first application concerned the effective 
potential in Higgs theories. 

Quantum chromodynamics (QCD) was also studied at finite temperature 
and densities using the temperature Green functions (Kalashnikov, 1984). 
The systematic examination of finite-temperature effects in quantum electro- 
dynamics (QED) at one-loop order was elaborated by Donoghue et  al. (1985) 
and Johansson et  al. (1986). The finite-temperature Cerenkov electrodynamic 
power spectral formula in source theory was also derived (Pardy, 1989). 

Here we use the Pardy procedure in order to generalize the formula (19) 
to the finite-temperature regime. It consists in the real-time formulation in 
the following transformation in the graviton propagator (15): 

1 

I k[  2 - nZ(k~ 2 - ie  

1 2"rri 
--> [k[ 2 - nZ(k~ 2 - ie + e 'Ef/kBr - 1 8([kl2 - nZ(k~ (21) 

where E = ho~ is the energy of the graviton, kB is the Boltzmann constant, 
and T is the temperature of the graviton gas in the gravitational medium with 
the index of refraction n. The considered situation is the analog of the 
electrodynamic one. 
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The transformation (21) enables us immediately to separate the finite- 
temperature part of the Green function. After inserting (21) into (15) we get, 
using some obvious mathematical operations, the temperature part of the 
D+g-function in the form 

_i Ii ~ dto sin(no~/c)[x - x'[ cos to(t - t') 
D+gr(X - x') - 2~r%n2 -v Ix - x'  I exp(ho~/kBT) - 1 (22) 

It is obvious that D§ is pure imaginary. Using definition (14), we get 
for the finite-temperature part of the spectral function the formula 

PT(O~, t) = 
exp(hto /kBT)-  1 

4'rrG I • c-~n 2 (dx)(dx')dt' 
sin(no~/c) lx - -  x' I 

Ix -- X'[ 
cos to(t - t') 

r _ 1 t')] • lTd'(x,  t ) g ~ g ~ T ~ ( x  ', t') ~ g~T~V(x, t)g~T~'f~(x ', 

(23) 

The last formula differs from the zero-temperature formula only by the 
multiplicative factor 2/[exp(hco/koT) - 1]. The total spectral formula is given 
obviously by the relation 

Ptotal = Pr=o + Pr = Pr=0 1 + exp(h~lksT) - 1 (24) 

or, after some algebra and using formula (19), 

vn 2 1 --- ~z [ 34 1 + ~3z] coth ; n[3 > 1 (25) 

and Ptota| = 0 for n13 < 1. 
The power spectral formula (25) is the finite-temperature generalization 

of the power spectral formula for the zero-temperature gravitational Cerenkov 
radiation (19). This formula was never derived in conventional gravity and 
is original in the Schwinger source theory. 

5. DISCUSSION 
The power spectral formulas of gravitational (2erenkov radiation at zero 

temperature (19) and at nonzero temperature (25) are derived here in the 
framework of the source theory for the first time. These effects are not 
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discussed in classical textbooks on gravity. Nevertheless these effects can be 
mathematically rigorously defined and described in the framework of source 
theory embedded in the curved space-time with metric (2). 

Formula (13) is valid for general metric space-time and it enables us to 
determine the power spectral formula of gravitons for general metric space- 
time if we know the propagator D§ x'). This means it generates further 
problems of the production ofgravitons in different metric space-times. 

In electrodynamics, the Cerenkov effect usually occurs for velocities 
comparable with velocities of light. However, if we consider the cold gas 
(Peters, 1974), then the Cerenkov gravitational effect occurs practically for 
all velocities. In order to see this surprising result, let us write the gravitational 
index of refraction derived by Peters (1974) for the cold gas, 

n = 1 + 27rpG ~ 2 (26) 

where p is the gas density. Then from the condition n13 > 1 we get, using 
(21), the inequality 

which means that the interval of frequencies is limited and because p is very 
small for the cold gas, gravitational I~erenkov radiation occurs only for very 
low frequencies. On the other hand, the interval of allowed frequencies is 
greater for sufficiently fast moving bodies. 

The amount of gravitons produced by the 0erenkov mechanism depends 
on the square of the relativistic mass m, and it is obvious that for elementary 
particles such as electrons, protons, and so on the production of gravitons 
will be small. 

It is obvious that such a small energy cannot be observed by any experi- 
mental equipment. On the other hand, a great production of gravitons by the 
Cerenkov mechanism can occur for cosmological bodies with sufficiently 
large masses and with energies exceeding the (~erenkov threshold. Of course, 
whether such an effect occurred during the explosion of supernova SN 1987a 
or during the big bang or occurs during the collisions of galaxies is an open 
question because of the nonexistence of the cold gas. On the other hand, 
Polnarev (1972) has shown that in the ultrarelativistic case in the anisotropic 
situation there exists the possibility ofn > 1 or n < 1 and the effect is probable. 

The investigation of the gravitational Cerenkov effect is analogous to 
the historical situation when Sommerfeld (1904, 1905) considered the theory 
of a charge moving with velocity greater than the velocity of light in vacuum. 
His theory was not accepted in his time because of the priority of the special 
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theory of relativity, where the maximal velocity is the velocity of light. We 
hope in this article that the sympathy to the existence of the gravitational 
Cerenkov radiation will be sufficiently strong in order to have some followers. 
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